
Lindenmayer Systems:

An Unreal Engine 5 L-System Generator

Dinh Huy Henry Ha
Student ID: 33871483

Mathematics for Games and VR/AR
MSc Games Programming

Github: https://github.com/HenryHa993/L-Trees
Video: https://youtu.be/3PYcd5rQyrM

Download: link

November 27, 2024

https://github.com/HenryHa993/L-Trees
https://youtu.be/3PYcd5rQyrM
https://drive.google.com/file/d/17ySKIwOW2_ad4HWpE9KB0uP_5KFG8JhJ/view?usp=sharing

Abstract

The objective of this project was to produce a customisable L-System generator,
which is intuitive and fun to use for users. This project was implemented in Unreal
Engine, using C++ for the generator and blueprints for UI.

Keywords— L-Systems, Unreal Engine, C++, Blueprints

1

Contents

1 Features 3
1.1 User Interface . 3
1.2 Presets . 4
1.3 3D L-Systems . 4
1.4 Hotkeys . 4

2 Classes 5
2.1 LSystemGeneratorSubsystem . 5
2.2 LSystemGeneration . 6
2.3 LSystemStructs . 6
2.4 User Interface . 6
2.5 Presets . 7

3 Results 8

4 Conclusion 10

2

Chapter 1

Features

1.1 User Interface

The primary goal behind the user interface was ease-of-use. To achieve this, the UI had to
clearly outline what parameters were required to generate an L-System as well as allow the
user to edit and add them.

To achieve this, the UI is broken down into three sub-menus, as inspired by Finn Tanner’s
L-System Tool [1]. These sub-menus include the main settings, rule settings and function
settings. The main settings enable users to adjust values such as the axiom and angle,
encapsulating the core parameters of an L-System. The rules settings allow the user to map
multiple variables to a string. Lastly, the function settings allow the user to map constants
and variables to a specific function.

When the user enters an invalid value, these values are flagged and the field is tinted red to
warn the user. This brings clarity to the user interface, clearly outlining what kinds of values
are expected from the field. If these values remain when the user attempts to generate an
L-System, they are simply skipped.

Some existing L-System generators offer limited extensibility to the user. For example, a
finite number of rules or fixed function mappings that the user can work with [2]. To improve
on this, the project allows the user to add/delete as many rules and functions as required.
The system also allows for the user to map variables and constants to a range of different
functions. This is useful, as grammars are often inconsistent between different L-Systems
found online. One such example can be seen through the difference in the rules presented in
[3] and [4].

Figure 1.1: L-Systems settings menu.

3

1.2 Presets

Another feature this project offers is loading of presets. This can be done through either
hotkeys (1-8) or through the L-Systems menu. Loading a preset using either technique will
in turn populate the fields of the L-System menu and generate the system.

Populating the fields allows the user to explore these presets. The user is able to edit the
values as well as add their own additional rules/functions as they wish. Manipulating existing
L-Systems is a great way of getting used to the UI and introducing someone to the topic of
L-Systems.

The presets include a range of L-Systems, namely node-rewriting and edge-rewriting systems.
Amongst them are also 3D L-Systems; a 3D Hilbert Cube [4] and a 3D-2 bracketed tree [5].

1.3 3D L-Systems

There are multiple 3D L-Systems online which utilise additional rotation functions about the
pitch and yaw [4][5]. In combination with common 2D L-System functions [3], the system
can generate 3D L-Systems such as the tree seen in Figure 1.2.

Figure 1.2: 3D Bracketed Tree.

1.4 Hotkeys

Other quality of life features include the ability to increment and decrement values found
within the main settings. These settings include the line length, line thickness, angle and
iteration. These allow the user to see how different parameters affect the look of the tree.

Figure 1.3: Hotkeys available to the user.

4

Chapter 2

Classes

2.1 LSystemGeneratorSubsystem

Found: Source/FlecsTest/LSystemGeneratorSubsystem.cpp

This class stores the rules, functions and default parameters used to generate and draw an L-
System. Rules and functions are implemented using TMap<TCHAR, FString> and TMap<TCHAR,

FunctionType> respectively. Maps provide efficient lookups, making it a better alternative to
traversing an array or list. They map characters to specific strings and function types, mak-
ing this generator suitable for context-free L-Systems. To add to these maps, AddRule(...)
and AddFunction(...) are used. These filter out invalid inputs by checking string lengths,
ensuring invalid rules are skipped. This is primarily called by the UI upon clicking the
generate button. This is made possible using the UFUNCTION(BlueprintCallable) macro.

Once parameters are set, the subsystem can generate a string based on the rules stored. This
is done through the Generate() and GenerateWithIterations(int Iterations) methods.
The former represents a single iteration on the current string (CurrentString), using the
Rules map. When called, it converts CurrentString to a character array and traverses it.
If a character exists as a key in Rules, it’s mapped string value is added to a new string.
Otherwise, the character itself is added. Once the array is traversed through, the new string
is stored as the new CurrentString. The latter of the generate functions runs Generate()
a number of times, depending on the input number (Iterations). This allows a specific
number of iterations to take place from a single function call, instead of multiple Generate()
calls. Both functions are implemented under the UFUNCTION(BlueprintCallable) macro,
allowing UI and other blueprints to call them directly.

This class is also responsible for drawing the tree. The Draw(AActor& Actor) method is
intended to take an actor reference. This allows the line drawings to take place from the
actors origin, allowing specific placement in the scene. Once called, the character array
generated from the CurrentString is traversed. If a character is found in the functions map
(TurtleFunctions), the mapped FunctionType enum is put through a switch statement and
the corresponding drawing function is run.

The first of the drawing functions allows for rotations about the three principal axis; the
roll, pitch and yaw. If the user intends to draw in 2D, it is advised to use the yaw functions.
To reduce confusion, the function drop-down menu groups the functions required for 2D at
the top, and puts more 3D oriented rotation functions at the bottom [Fig. 2.1].

Other drawing functions include transform caching. Implementing this required a LIFO
(Last-In First-Out) data structure, which was done using a TArray. This was intuitive as it
has both push() and pop() functions required. When a character mapped to the caching
function is found, it will simply push the actor’s transform onto the stack. When a character
mapped to the ‘return to cache’ function is found, the actor’s transform is set to the popped
transform.

Lastly, the line drawing function translates the actor’s transform component forwards by a
distance depending on the line length. It then draws a line between the previous position
and the new position.

5

https://github.com/HenryHa993/L-Trees/blob/main/Source/FlecsTest/LSystemGeneratorSubsystem.cpp

This class inherits from the UGameInstanceSubsystem, which functionally makes the class a
singleton. This is appropriate for the project, as global access allows for the UI elements to
store parameters and call methods directly from a global generator.

Figure 2.1: Function drop-down menu.

2.2 LSystemGeneration

Found: Source/FlecsTest/LSystemGeneration.cpp

This class is responsible for drawing L-Systems to a specific location. It has a blueprint
callable function called Draw(). This calls the LSystemGeneratorSubsystem’s Draw(...)

method, inserting a self reference as input. This allows the system to be drawn to the location
where the actor is placed in the scene. Each time LSystemGeneratorSubsystem generates an
L-System, it broadcasts its FOnGenerate delegate. This triggers each LSystemGeneration’s
Draw() call. By default, all objects inheriting from the LSystemGeneration class will add
their Draw() function to the delegate on BeginPlay(). The BP TestGeneration blueprint
inherits from this C++ class and can be found in the centre of the scene.

2.3 LSystemStructs

Found: Source/FlecsTest/LSystemStructs.h

This class is consists of the structs and enums used in LSystemGeneratorSubsystem. In initial
planning, it was expected that the project may need additional structs for the customisation
of the tree, however these were not required. Instead, it stores the FunctionType enum, which
specifies the type of function assigned to a character. It is used in the TurtleFunctions map
and in Unreal blueprints for the presets. See Figure 2.2.

2.4 User Interface

Found: Content/L-Trees/UI

User interface is broken up into multiple blueprint classes. All changes to L-System param-
eters should be reflected in the menu, making the UI the centrepiece of the project. Any
adjustments made through hotkeys or presets goes through the UI in order to adjust the
appropriate fields to reflect the current generation.

This is done by storing the parameters separately in the UI itself. Once the user presses the
generate button any values, rules and functions stored in WBP LSystemInterface are passed
to the LSystemGeneratorSubsystem. There, the values will be checked and stored if valid.
The generation will then take place.

6

https://github.com/HenryHa993/L-Trees/blob/main/Source/FlecsTest/LSystemGeneration.cpp
https://github.com/HenryHa993/L-Trees/blob/main/Source/FlecsTest/LSystemStructs.h
https://github.com/HenryHa993/L-Trees/tree/main/Content/L-Trees/UI

Figure 2.2: FunctionType enum.

Figure 2.3: User interface components.

2.5 Presets

Found: Content/L-Trees/Core/Presets

As UI is done using blueprints, it was appropriate to implement preset classes at this level
also. This is because preset values should be reflected in the UI as well as the drawing.
BP PresetLSystemBase is the base class for all presets, and encapsulates all the parameters
required to generate and draw a system.

Figure 2.4: Preset base parameters.

7

https://github.com/HenryHa993/L-Trees/tree/main/Content/L-Trees/Core/Presets

Chapter 3

Results

The result is an application which can generate and draw a both 2D and 3D L-Systems
entirely from the UI. This gives the user the ability to fully form their own L-Systems, as
well as edit pre-existing systems included in the project. The UI is intuitive, allowing the
user to add and delete any amount of rules and functions. In addition, the application
prevents invalid inputs on both a UI and systems level. Lastly, the user can edit any main
settings through use of hotkeys.

To evaluate the generator itself, I will put a side-by-side comparing variations of the Koch
Curve L-Systems found from The Algorithmic Beauty of Plants [6] to the drawings produced
by my app.

(a) Project generation (b) The Algorithmic Beauty of Plants

Figure 3.1: Koch Curve variation 1: FF-F-F-F-F-F+F

8

(a) label 1 (b) Project generation

Figure 3.2: Koch Curve variation 2: FF-F-F-F-FF

(a) Project generation (b) The Algorithmic Beauty of Plants

Figure 3.3: Koch Curve variation 3: FF-F+F-F-FF

(a) Project generation (b) The Algorithmic Beauty of Plants

Figure 3.4: Koch Curve variation 4: FF-F–F-F

9

Chapter 4

Conclusion

Despite achieving the goals set out from the beginning of development, there are improve-
ments the project would still have benefit from. For example, the addition of stochastic
L-Systems would have given the user another way to explore included L-Systems. Moreover,
this would have enhanced the look of 3D L-Systems, giving them a more variation between
generations.

In addition, it was initially planned to line customisation and leaves to trees. The latter
would have been achieved by identifying and saving positions located before a return-to-
cache function.

Overall, this was an enjoyable project which enhanced my knowledge of both tools develop-
ment and L-Systems. Originally, I did want to develop this using an ECS System, however
that was out of the scope of the project. As this project is built on-top of an ECS template,
this is something I may do in the future.

10

Bibliography

[1] F. H. Tanner, “My L System Tool.” YouTube, Feb. 2022. [Online]. Available:
https://www.youtube.com/watch?v=JUjdamZvicE.

[2] Online Tools, “L-System Generator - Online Tools.” Online Tools. [Online]. Available:
https://onlinetools.com/math/l-system-generator.

[3] P. Bourke, “L-System Fractals.” Paul Bourke, July 1991. [Online]. Available:
https://paulbourke.net/fractals/lsys/.

[4] arussell, “3D L-System with C and WPF.” CodeProject, Dec. 2014. [Online]. Available:
https:

//www.codeproject.com/Articles/855693/3D-L-System-with-Csharp-and-WPF.

[5] H.-W. Chen, “L-System Plant Geometry Generator.” Cornell University, Jan. 1995.
[Online]. Available: https:
//people.ece.cornell.edu/land/OldStudentProjects/cs490-94to95/hwchen/.

[6] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. New York,
NY, USA: Springer-Verlag, 1990. Chapter 1: Graphical Modeling Using L-Systems.

11

https://www.youtube.com/watch?v=JUjdamZvicE
https://onlinetools.com/math/l-system-generator
https://paulbourke.net/fractals/lsys/
https://www.codeproject.com/Articles/855693/3D-L-System-with-Csharp-and-WPF
https://www.codeproject.com/Articles/855693/3D-L-System-with-Csharp-and-WPF
https://people.ece.cornell.edu/land/OldStudentProjects/cs490-94to95/hwchen/
https://people.ece.cornell.edu/land/OldStudentProjects/cs490-94to95/hwchen/

	Features
	User Interface
	Presets
	3D L-Systems
	Hotkeys

	Classes
	LSystemGeneratorSubsystem
	LSystemGeneration
	LSystemStructs
	User Interface
	Presets

	Results
	Conclusion

